0 Se p 20 09 Turbulence , Complexity , and Solar Flares
نویسندگان
چکیده
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.
منابع مشابه
Solar Latitudinal Distribution of Solar Flares around the Sun and Their Association with Forbush Decreases during the Period of 1986 to 2003
Solar flare events of high importance were utilised to study solar latitudinal frequency distribution of the solar flares in northern and southern hemisphere for the solar cycle 22 to recent solar cycle 23. A statistical analysis was performed to obtain their relationship with sudden storm commencement (SSCs) and Forbush decrease events (Fd) of cosmic ray intensity. An 11-year cyclic variation ...
متن کاملParticle Acceleration by Strong Turbulence in Solar Flares: Theory of Spectrum Evolution
We propose a nonlinear self-consistent model of the turbulent nonresonant particle acceleration in solar flares. We simulate temporal evolution of the spectra of charged particles accelerated by strong long-wavelength MHD turbulence taking into account the back-reaction of the accelerated particles on the turbulence. The main finding is that the nonlinear coupling of accelerated particles with ...
متن کاملEvolution of the Loop-Top Source of Solar Flares—Heating and Cooling Processes
We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by RHESSI. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early “pre-heating” phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and i...
متن کاملDamping of MHD turbulence in Solar Flares
We describe the cascade of plasma waves or turbulence injected, presumably by reconnection, at scales comparable to the size of a solar flare loop, L ∼ 109 cm, to scales comparable to elementary particle gyro radii, and evaluate their damping at small scales by various mechanisms. We show that the classical viscous damping valid on scales larger than the collision mean free path (∼ 108 cm) is u...
متن کاملMagnetic Reconnection in Astrophysical and Laboratory Plasmas
Magnetic reconnection is a topological rearrangement of magnetic field that converts magnetic energy to plasma energy. Astrophysical flares, from the Earth’s magnetosphere to γ -ray bursts and sawtooth crashes in laboratory plasmas, may all be powered by reconnection. Reconnection is essential for dynamos and the large-scale restructuring known as magnetic self-organization. We review reconnect...
متن کامل